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LETTER TO THE EDITOR 

On the number of spiral self -avoiding walks 

A J Guttmann and N C Wormald 
Department of Mathematics, Statistics and Computer Science, University of Newcastle, 
New South Wales, 2308, Australia 

Received 11 January 1984 

Abstract. We consider the problem of spiral self-avoiding walks as recently introduced by 
Privman. We prove that the number of n-step spiral self-avoiding walks is given by 

s, = e x ~ 2 a ( n / 3 ) 1 / 2 ~ / ( n 7 / 4 c ) [ l + ~ ( 1 / J i ) ~  

where c = ~ / ( 4 . 3 ~ / ~ ) .  Similar results for various subsets of these walks are also obtained. 

Very recently Privman (1983) introduced the problem of 'spiral' self-avoiding walks 
(SAW'S) on the square lattice. These walks possess, in addition to the usual self- 
avoiding constraint, the property that left-hand turns are forbidden. As a consequence, 
SSAW'S may only expand linearly or spiral outwards. Failure to do either results in 
the walk being trapped, and unable to grow. 

Privmann enumerated the SSAW'S with up to 40 steps (s,; n = 1 ,  40), and their 
mean square end-to-end distance (p , ;  n = 1,40), and, on the basis of a conventional 
series analysis, suggested that s, - p"nY-l and p n - c - n z Y  where p=1.15*0.15, 
y = 5.2 * 1.3 and v = 0.62 * 0.06, in analogy with the behaviour of normal self-avoiding 
walks, for which similar functional forms apply, but with different values for p, y and 

Subsequently, Redner and De Arcangelis (1984) extended the series to 65 terms, 
and pointed out that the spiral constraint imposes upon the walks a characteristic 
behaviour similar to the number of partitions of the integers into distinct parts. As 
this quantity is known to grow like pJ;;, they reanalysed the walk generating function 
for a growth function of this form and concluded that the series were suggestive of 
s, - pnU with a ~ 0 . 5 5 .  This exponent estimate derived from a ratio analysis in which 
n"-' log(s,/s,-,) was extrapolated against l / n .  However, it is clear that if a =$, the 
extrapolants will behave like ko[l + k,/&+O( l/n)]. Thus earapolation against l / n  
will not be linear, due to the curvature induced by the O( 1 / J n )  term. It is this factor 
that caused Redner and De Arcangelis to estimate a = 0.55, (rather than the correct 
value a = $  which has the (local) effect of reducing the curvature in the ratio plots. 

Privman's form also fits the data quite well locally, certainly better than the 
asymptotic form we obtain, which is still some 30% in error-at n = 65. The slow 
convergence is partly due to the correction term being O( 1 / J n )  rather than O( l / n )  
as is the case with more conventional forms of series. 

In the next section we show that the correct asymptotic form can be derived by 
considering the number of partitions of the integer n into k distinct parts, q ( n ,  k). 

U. 
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The fundamental result needed is due to Szekeres (1951) and is 

q ( n ,  k ) - { a  l o g 2 / 2 m [ 2 ( ~ - 1 ) ] ’ / ~ }  e~p[ . r r (n/3)’ /~(1-FA~)]  (1) 

k +$ = ( n  +&)1’2a-1/2[ 1 + (1 - l/a)A +constant A 2  + O(A3)] (2) 

where a =A( .n/log 2)2, F = ( a  - 1)/2a2 and 

where A =O(n-’”). Note that k =O(&). Szekeres also showed that q ( n ,  k )  is 
monotonic in k for n large, except at the peak (where k -  ( n / ~ ) ” ~ ) .  

We specify the first step of the walk to be vertically upwards. All SSAW’S exist as 
either a single ‘spiral’ (figure l(a))  or a double spiral (figure l (b) ,  (c)). Note that the 
purely linear walk, or walks with only one turning point, are just simple cases of single 
spirals. Each SSAW can be decomposed into a concatenation of two walks of a particular 
type by either a vertical line (figure l ( a )  and ( b ) ) ,  a horizontal line ( l (c ) )  or in some 
cases both ( l (d) ) .  The cutting line chosen is the appropriate line such that the last 
linear segment of the spiral OA is equal to the length of the third last segment (the 
relevant segments are shown bold in figure 1). In l ( d )  the vertical cutting line shown 
is the appropriate line for the reversed walk. 

I 
I ! 

A 
I d )  

F i r e  1. A variety of spiral self-avoiding walks with origin 0 and end-point N. The 
cutting line (see text) is shown broken. 
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Let S, denote the set of n-step SSAW’S with cardinality s,. Let I, denote the set 
of n-step SSAW’S discussed above; that is, SSAW’S whose last and third last segments 
are of equal length. Let C, denote a class of spiral walk whose last segment is at least 
one greater than the length of the third last segment. Finally, we denote the set of 
‘live’ walks by L,, and these are defined to be single spirals (isomorphic to l (a ) )  with 
the second last segment greater than the fourth last segment. Such walks can always 
be continued indefinitely, hence the name. Denote the cardinalities of I,, C, and L, 
by i,, c, and 1, respectively. From figure l(u)-l(d),  it is clear that the section of the 
spiral from 0 to A belongs to I k ,  while that from A to N belongs to C n - k ,  and the 
walks l (a ) ,  (b) and (c) can be uniquely decomposed in this way. Thus we can write 

The second sum corrects for walks of type d,  which will be counted twice by the first 
sum. Figure 1 (e) shows the geometrical construction that uniquely transforms such 
walks (as in l (d))  into two concatenated walks from the set I. Note too that detailed 
definitional specifications such as io are needed for (3) to be universally applicable. 
We have shown that these cases do not contribute to leading order, and so prefer to 
neglect them at this stage. Equation (3) can be used, together with (4) and (5) for 
efficient calculation of the numbers s,. Next, if one considers the possible ways to 
‘grow’ a member of class C,+l, it can be seen that such walks are obtainable by adding 
a step in a particular direction to each member of C, U I,. Thus 

= c, + i,. (4) 
Now the length of the vertical and horizontal segments of C, must independently 
satisfy nl < n2 . . . < n, where ni numbers the length of the ith linear segment counting 
from the origin. Let the total number of vertical (horizontal) steps be nv( nH), so that 
nv + nH = n. Further, if the number of horizontal segments is k, the number of vertical 
segments is either k or k+ 1 (figure l ( b )  and (c)). Thus 

where q ( j ,  k) is defined in (1). Now (1) implies that (5) is at least of the order of 
[i( n / 2 ) ] * /  n4 where i (  n) is the number of partitions of n into distinct parts. It follows 
that we need only consider terms with j = in + O(nO“). Using (1)  and estimating the 
sums by integrals, a considerable amount of algebra then yields 

for some constant c. The form of the correction terms here follows easily from the 
method of Szekeres. From (4) we then obtain 

i, = ( 4 1 2 J P 2 )  ~x~[*(~~/~)~/~I[I+o(I/J~)I. (7) 
Further, as a by-product of this analysis we find for live spirals 

Substituting (6) and (7) into (3) we see that the largest terms in the sum are those in 
the vicinity of k = n/2. Expanding around this maximum, and again replacing the sum 
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by an integral, we finally obtain 

s, = (77/4.35/4. n714) exp~2v(n/3) ' /~][1+ O( 1/Jn)l (9) 
where we have neglected the second sum in (3, it being O ( l / n )  compared to the first. 
The form of the correction term in (9) [O( l / Jn ) ]  is obtained by retaining the necessary 
correction terms at all stages, including the proofs in Szekeres (1951). 

We have found the asymptotic form for the number of n-step spiral self-avoiding 
walks embeddable in the squ_are lattice. A crude numerical calculation gives the 
correction term to (9) as p / J n ,  with p = -0.7. Similar asymptotic forms for related 
subsets of spiral walks are also obtained. 

After the completion of this work we became aware of calculations of Blote and 
Hilhorst (1984) and of Klein et a1 (1984). Blote and Hilhorst obtain the same results 
as ours, though by a completely different method and without any error bounds. They 
also obtain the asymptotic form for the mean square end-to-end distance. Klein et a1 
incorrectly obtain s, - n-5'4 exp[2~(n /3 ) ' /~ ] ,  though they correctly find c,, - 
n-' exp[.rr(2 n/ 3) 1/2]. 

These calculations certainly confirm that SSAW'S belong to a different universality 
class than ordinary SAW'S. It seems however, that they are more of combinatorial 
significance than of statistical mechanical significance. 

We are most grateful to Professor George Szekeres for his comments on, and corrections 
to, the manuscript. 
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